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ABSTRACT

This paper proposed variation of spectral clustering model based on a novel affinity metric
that considers the distribution of the neighboring points to learn the underlaying structures
in the data set. Proposed affinity metric is calculated using Mahalanobis distance that ex-
ploits the concept of outlier detection for identifying the neighborhoods of the data points.
Random Walk Laplacian of the representative graph and its spectra has been considered for
the clustering purpose and the first k number of eigenvectors have been considered in the
second phase of clustering. The model has been tested with benchmark data and the quality
of the output of the proposed model has been tested in various cluster validity indexes.
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1. INTRODUCTION
Data clustering is the process of grouping the nonuniform data elements by identifying the underlaying

structure[1]. Data clustering is a difficult task from computing’s point of view. This difficulty is because data clus-
tering is computationally hard. There are different approaches for data clustering and a whole branch of computer
science has been devoted for that. General reference on data clustering is due to Everitt et al[2]. Jain et al surveyed
clustering, taxonomy of clustering and recent trends[3]. A More recent survey is done by Xu et al[4]. Some recent
applications of clustering has been done by Farshchian et al [5] and Sharma et al [6].

There are different approaches towards clustering. Some of the popular approaches are Hierarchical-, Density
Based-, Squared-Error based-, Fuzzy-based-, and Graph based clustering[4].

The purpose of the present study is to cluster spatial data sets using graph based model. The cluster shape
and its orientation is most important parameter in the present work. The objective of the present research work is to
handle the clustering problems where the cluster shapes are non-convex and moreover the present model considers the
trend of the data sets and not just the proximities.

The graph based model has gained enormous popularity in recent days. Graph is a very good algebraic
structure for defining proximity among the data points and proximity among the points is the key for the success of
almost every clustering algorithm. There are different areas of graph theory that can be exploited for data clustering.
Some Delaunay graph based model is available due to Yang et al [7] and Roy et al[8]. Some minimum spanning tree
based clustering technique has been proposed by Foggia et al [9] and Roy et al[10]. Some early minimum as well
as maximum spanning tree based approaches were proposed by Asano et al[11]. An outstanding survey on Graph
clustering is done by Shaefer[1] where the recent developments has been outlined explicitly.

Spectral clustering is one of the major branches of the graph based clustering where the spectra i.e. the
eigenvalues and eigenvectors of the Laplacian of the graph is considered for clustering. There are several papers on
this topic. Some of them are due to Higham et al [12], Toussi et al [13] and Qiu et al [14]. A very good survey on
spectral clustering is due to Luxburg[15]. A general survey on graph Laplacian has been done by Chung[16]. Some
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variation of the traditional spectral clustering is available due to Spielman et al[17] and Fiedler[18].
Affinity or distance among the data points is the most important input to any clustering model. This paper

uses a Mahalanobis distance proposed by Mahalanobis[19] based novel affinity matrix for spectral clustering. A good
discussion on Mahalanobis distance can be found in a book by Marsland[20]. Mahalanobis distance has been used
effectively for outlier ditection by Hodge et al [21].

The quality of the output produced by any clustering algorithm is measured by several validity indices. There
are two major types of cluster validity indices. Internal and external indices. Internal indices measures the quality of
the cluster produced, by the distribution of the data and the density/scatterness of the data points. The external indices,
on the other hand, considers some labeled data and the quality of the clusters is measured on the basis of that. A good
comparative study on the performance of various clustering indices is done by Saha et al[22].

The rest of the article is organized as follows. Section 2. discusses the mathematical backgrounds necessary
of the model. Section 3. presents and discusses the proposed model. Section 4. discusses the results and analysis.
Conclusion comes in the section 5. and references are drawn at the end.

2. MATHEMATICAL BACKGROUND
This section uncovers the necessary mathematics required to develop and explain the proposed model. The

proposed model is a spectral clustering model based on a novel affinity metric that calculates the proximity among
the data points in a novel way. The rest of this section discusses spectral graph, similarity measures and other neces-
sary mathematical backgrounds in the following manner. Subsection 2.1. discusses the clustering as an optimization
problem. Subsection 2.2. discusses spectral graph theory and subsection 2.4. discusses the distance and similarity
measures.

2.1. Data Clustering

Given a set of data points, the consideration of clustering is to identify the grouping by exploring the under-
laying structures in a data set, if there exists any. The main assumption in the clustering is that the property of the
underlying structure of the data set is not known. Only the number of clusters may be known sometimes.

formally clustering can be defined as follows:
Given S = {p1, p2, p3, p4, · · · , pn} is the set of n data points in m-dimensional space Rm, the clustering is

the partition of S into k different groups, k being the number of clusters, C = {C1, C2, C3, · · · , Ck} with respect to a
distance metric d(pi, pj) in such a way that the inter-cluster distance becomes maximum and the intra-cluster distance
becomes minimum, over all the partitions[3]. i.e. the objective of clustering is to minimize the ratio of intra cluster
distance and inter cluster distance as shown in equation 1.

Minimize Z =
∑
∀Ci∈C

IntraCluster Distance

InterClustter Distance
w.r.t. d(pi, pj) (1)

2.2. Spectral Graph Theory

A graph is an algebraic structure G =< V,E >, where V is called the vertex set and E is called the edge
set. The set E can be defined as a relation ρ over the cartesian product V × V , defined as xρy => (x, y) ∈ E which
implies that there is an edge between x and y of the vertex set V [23].

Parallel edges implies more than one edge between two vertices and in our case parallel edges are not allowed.
A graph consists of self loop if xρx for some x ∈ V . A graph G =< V,E > is called an undirected graph, if the
relation rho is symmetric.

A graph is called a simple undirected graph or S-graph, if it is undirected graph without any self loop or
parallel edges.

A graph is weighted, if there is a weight function d(vi, vj) associated with every edge e ∈ E. A weight
function d(., .) is a metric if it follows the following properties:

• Non-negativity: ∀x, y ∈ Rm, d(x, y) ≥ 0.

• Symmetricity: ∀x, y ∈ Rm, d(x, y) = d(y, x).

• Triangular Inequality: ∀x, y, z ∈ Rm, d(x, y) + d(y, z) ≥ d(x, z).
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Given a weighted graph G, the Adjacency matrix representation of the graph is a square matrix of order
n = |V | where the entry wi,j (wi,j ≥ 0), is the weight of the edge e(i, j). i.e. the adjacency matrix W can be defined
as,

Wn×n = (wij)i=1,2,··· ,n;j=1,2,··· ,n (2)

The degree di of a vertex vi ∈ V of a graph, represented as per equation 2, can be defined as sum of the
weights of the incident edges on a particular vertex as shown in the equation 3.

di = d(vi) =

n∑
j=1

wij (3)

The degree matrix D is a diagonal matrix with the degrees di are the leading diagonal of the matrix D.
The tool for spectral clustering is Laplacian matrix of the graph. A Laplacian of a graph is a symmetric

matrix that can be formed from the adjacency matrix. The eigenvalues and eigenvectors of the Laplacian are the most
important tools for analyzing the structure of a graph. Specially the cut related things can algebraically be analyzed by
computing the values of the eigenvalues and eigenvectors of the graph Laplacian. There exists several graph Laplacians
and every Laplacian has its own strength and weakness in a particular situation [15]. A detailed literature on spectral
graph theory has been given by Chung[16].

Unnormalized Laplacian: The unnormalized Laplacian of a graph, denoted as L, can be defined as per the equa-
tion 4.

L = D −W. (4)

where D is the diagonal degree matrix and W is the adjacency matrix. The important thing to note that
the Laplacian defined above, is a real symmetric matrix whose diagonal elements are all non-negative and all other
elements are negative. Also, the sum of every row is zero. The spectra is the eigenvectors of the this Laplacian. There
are several important properties of this spectra. Some of the properties of this Laplacian [24][25][15] are given as
follows.

1. f ′Lf = 1
2

∑n
i=1

∑n
j=1 wij (fi − fj)2 , ∀f ∈ Rn.

2. L is symmetric and positive semi-definite.

3. The smallest eigenvalue of L is 0.

4. All eigenvalues are real with 0 = λ1 ≤ λ2 ≤ · · · ≤ λn.

5. If the graph is not connected, the the number of 0 eigenvalue, i.e. the multiplicity of eigenvalue 0, is the number
of connected components.

Normalized Laplacian: The spectra of unnormalized Laplacian of a graph is independent of the matrixD. Normal-
ized Laplacian overcomes this. Two of the normalized Laplacians are very popular. These are Symmetric Laplacian
and Random Walk Laplacian.

Symmetric Laplacina Lsym is a symmetric matrix define as per the equation 5.

Lsym = D−1/2LD−1/2 (5)

The Random Walk Laplacian models the Random Walk in a graph. i.e. starting from an arbitrary vertex of
a graph, if we randomly go to any of its adjacent vertex and follow the same process repetitively, then in a densely
connected subgraph of the original graph, the walk will be ended in the same subgraph in most of the cases. This
property is modeled in a Random Walk Laplacian. The random walk graph Lrw can be defined as per the equation 6.

Lrw = D−1L = I −D−1W (6)

All of the properties for unnormalized Laplacian holds good for Lrw also. In the present paper, the random
walk Laplacian and its spectra will be used for clustering.

Spectral Clustering based on Local Distribution(Parthajit Roy)
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2.3. Similarity Measurement

The success of the graph based clustering algorithms lie on the choice of similarity matrix. The similarity
between two data points is the only means for the creation of an edge in the graph between them. If the edges are more
close to the actual relationship, the success possibility of the algorithm is also high. For this, similarity measurement
demands adequate research.

There are several types of similarity measures available. Some of them exploits the distance between the data
points only. The following part discusses two of them.

ε−neighbor: In this case, if the distance between two data points is less then a predefined benchmark value ε, then
the weight is assigned. Otherwise 0 is assigned.

Gaussian Similarity: In this case, the distance between the data points is computed as,

g
(
~X, ~Y

)
= e−

‖ ~X−~Y ‖2

2σ2 (7)

The value of σ in the equation 7 known as the strength of inclusion, i.e. more the value of σ, the more the
weight will be given to the edge between the data points. i.e. far points will also come under consideration with heavy
weight.

2.4. Distance Metric

Given two data points, the ultimate tool for designing the Laplacian matrix is similarity among data points
and the similarity is based on the distance among data points, which is the weight of the edge between them. There
are several distance functions available but the most popular is the Euclidean distance defined as,

E(i, j) =

(
m∑

k=1

|xi (k)− xj (k)|2
)1/2

(8)

The generalization of the Euclidean distance is called the Minkowski distance define as,

M(i, j) =

(
m∑

k=1

|xi (k)− xj (k)|n
)1/n

(9)

There are other distance functions also. But These two are the most popular.

3. PROPOSED MODEL
This section presents proposed model. The Eucledian (Equation 8) and Minkowski (Equation 9) of the

previous section gives the proximity but their main disadvantage is they measures the distance from a single point.
Even if the distance needs to be measured from a distribution, they first convert it to a single point (like mean, median
etc.) and calculate the distance. This mean or median is called representative of the distribution and often they do not
show good result. Consider the following situation. Let there are 12 points in two dimensions. Some values are shown
in Table 1 and the distrubution are shown graphically in figure 1 (a). Suppose the black-fill spots are some distribution.
In our case this will be the neighbor set of some point.

Table 1. Sample points in two dimensions

x 3.0 2.9 2.8 2.7 . . . 2.0
y 1.0 1.1 1.0 1.0 . . . 1.1

We would like to find out the distance of any other points, like P1 or P2 from this distribution. Clearly the
point P2 is more close to this distribution than P1. But how to measure that mathematically? The traditional way
will find the mean of the distribution and will try to find the distance of the given point from the mean. But this is not
good here, because point P1 and P2 are equidistance from the mean, so either both will be rejected or both will be
accepted. Figure 1 (a) shows this.
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(a) (b)

Figure 1. (a) Distribution of the point set of table 1 (b) Point P1 and P2 are equidistant from the mean of the distribution.

The solution to this problem is the Mahalanobis distance[19]. Mahalanobis distance is a distance measure
which addresses the above problem in a better way. Following are steps for calculating Mahalanobis distance.

Given a data set S = {p1, p2, · · · , pn} where each pi ∈ Rm, the mean is defined as per equation 10.

µ =
1

n

n∑
i=1

pi (10)

variance is defined as per equation 11.

σ2 =
1

n

n∑
i=1

(pi − µ)
2 (11)

The Covariance matrix Mm×m, where m is the number of attributes of the data set, can be defined as,

M = cov(i, j);∀i = 1. · · ·m; j = 1, · · · ,m (12)

and the Mahalanobis distance between x1 and x2 is defined using the equation 12 as,

d =
√
x1M−1x2 (13)

In the figure 1 (b), the Euclidean distance between P1 and the mean is 0.6. The distance of P2 from the mean
is also 0.6. So, any algorithm that considers Euclidean distance will either include both of them or will reject both of
them, which is unrealistic. The Mahalanobis distance (equation 13, on the other hand, for P1 from the distribution is
34.28 whereas the distance of P2 from the distribution is 24.11. This clearly states that the point P2 is more close to
the distribution than point P1.

Spectral Clustering based on Local Distribution(Parthajit Roy)
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Figure 2. Point P3 falls outside the distribution and the Point P4 falls inside.

Another illustration is shown in figure 2. Here, point P3 and P4 are considered. Clearly, P4 falls inside the
distribution and P3 falls out side. The Mahalanobis distance states this fact clearly as the distance of P3 is 28.64 and
that of P4 is 23.59. If a suitable cutoff distance can be set, then P3 can be excluded and the P4 can be included which
is not possible in case of traditional similarity measures.

The present model exploits this property of Mahalanobis distance in the neighborhood of each point for
calculating the neighbors on the basis of distribution similarity and not on the basis of distance similarity. The model
assumes the number of clusters as a prerequisite. This is k in the present case. The model also assumes some
knowledge, as in case of other clustering algorithms, as parameter value for the creation of similarity matrix.

Initially, the algorithms has been presented and then the working principle of the proposed model has been
discussed explicitely. The algorithm for Mahalanobis distance based similarity matrix computation has been proposed
in Algorithm 1. The algorithm for clustering model is shown in the Algorithm 2 .

Algorithm 1 Similarity Matrix Computation

Input: S =
{
~P1, ~P2, . . . , ~Pn

}
. m-dimensional Data Points to be clustered.

Input: ε . The Benchmark Distance value for Euclidean distance
Input: η . The Benchmark Distance value for Mahalanobis distance

1: declare Nm×m, Mm×m as matrix
2: N ← SIMILARITYMATRIX(S, ε) . Calculates the ε-neighbor similarity matrix in the traditional way.
3: for all ~Pi ∈ S do
4: declare A as set
5: A← NEIGHBORHOODOF( ~Pi, N) . Calculates The neighborhood of ~Pi w.r.t. the already computed N .
6: matrix Γ← COVARIANCEMATRIX(A)

7: for all ~Pj ∈ S do

8: d←
(
~Pj

T
Γ−1 ~Pj

)1/2
9: if d ≤ η then

10: M (i)(j) ← 1/d
11: M (j)(i) ← 1/d
12: else
13: M (i)(j) ← 0
14: M (j)(i) ← 0
15: end if
16: end for
17: end for
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Algorithm 2 Spectral Clustering using Mahalanobis Distance

Input: S =
{
~P1, ~P2, . . . , ~Pn

}
. m-dimensional Data Points to be clustered.

Input: K . The number of clusters
1: declare Mm×m as matrix
2: M ← MAHALANOBISSIMILARITYMATRIX(S, ε) . Calculates the Mahalanobis distance based similarity matrix

using Algorithm 1.
3: Lrw ← RANDOMWALKLAPLACIAN(M)
4: CALCULATEEIGENS(Lrw) . Calculates the eigenvalues and eigenvectors.
5: SORTEIGENVALUES . Sorts the eigenvalues in ascending order.
6: D ← SMALLESTEIGENVECTORS(k) . D is the set of k eigenvectors for k smallest eigenvalues.
7: K-MEANS(D, k) . Cluster k eigenvectors using K-means algorithm.

From Algorithm 1 and Algorithm 2, it is clear, that the main tricky part is the formation of the similarity
matrix or the affinity matrix. Let us discuss the working principle of this part first. What the algorithm 1 is doing is
that it is calculating the final similarity matrix or adjacency matrix in two passes. The first pass calculates the similarity
matrix or the adjacency matrix using any traditional method. In the present paper, ε-neighbor has been adapted but
other similarity matrices may also be chosen. Thereafter every point and the neighborhood of them are being computed
for the second pass or final adjacency or similarity matrix. This is computation is very tricky. For a particular row,
matrix elements with nonzero value is the vertices of the neighbor set. after having vertex set , Lets say A, the present
paper computes the covariance matrix of the neighborhood set A. Proposed model considers the other points and the
Mahalanobis distance of them. A second new similarity matrix is being created in this way. Here also any suitable
similarity measure may be considered. In the present paper, ε-neighbor has been chosen. i.e. given the Mahalanobis
distance of a point from a set of points, if the distance is less than ε, then the point is considered for being a member
of the neighborhood of the point otherwise the point is considered as the outlier of the point set and is not considered
to be a neighbor of the point set.

From the discussions, it is clear that the Mahalanobis distance based similarity matrix is more realistic. It
may include (or reject) a point in neighborhood of point by not measuring the distance only but by considering the
distribution also. This method uses the technique of outlier exclusion in micro level for creating affinity or similarity
matrix.

Algorithm 2 is the actual clustering algorithm. The present paper assumes the number of clusters, i.e. k is
already known. Then the present paper calculates random walk Laplacian of the Mahalanobis distance based similarity
matrix. The reason for selecting the random walk Laplacian is that, it identifies dense subgraph in a better way and
therefore gives a better result in practical. The proposed method finds the eigenvalue of the Laplacian of the matrix
and sorts them in ascending order and the smallest k eigenvalues are identified and the corresponding eigenvectors are
considered for k-means clustering and the result of this k-means clustering is the final output.

4. RESULTS AND ANALYSIS
The model has been tasted with two data sets. One is a toy data set proposed by the authors and the second

data set is known as spiral data set proposed by Chang and Yeung[26].
The performance of the proposed model has been compared with three other models namely K-means algo-

rithm, hierarchical clustering and one of the standard spectral clustering method. More about K-means and hierarchical
clustering can be found in [2, 3]. The standard spectral model is due to Shi-Malik [27].

The toy example consists of 75 data points in a two dimensional plane. The data set has been taken in such
a way that the trend of the points are clear. In the figure 3 (a), it is clear that the small portion in the right side of the
lower cluster (indicated as C in the figure) is a part of the lower cluster and that the small middle cluster(indicated
as B in the figure)is the part of the upper straight line. The trend clearly suggests that. The important thing to note
that the small clusters are equidistant from the lower spiral cluster. i.e. portion B and portion C are equidistant from
the lower spiral part of the figure 3 (a). Portion B is equidistant from lower spiral part and the upper straight line
portion. So, the traditional distance or the k-nearest neighborhood is not at all a good measure, because none of these
considers the trend of the data sets. Either they will include both of the small clusters or they will exclude both of
them. The proposed Mahalanobis distance based similarity matrix is a very good option in such type of situations
because it will include one and exclude the other based on the point distribution. The result of the proposed model is
shown in figure 3 (b). The result shows that the proposed model clearly considers the distance as well as the cluster
point distribution trends.

Spectral Clustering based on Local Distribution(Parthajit Roy)
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(a) (b)

Figure 3. (a) The Sample toy data. (b) The black colors and red colors are the two clusters.

The proposed models performance is compared with the standard models and the results produced are tested
by seven internal indices and four external indices. Table 3 and table 2 are the results of the tests. The proposed model
shows better result in four out of seven indices. All the four external indices says the strength of the proposed model
is better in the proposed situation.

Table 2. Internal Indices for proposed toy data

On Synthetic Toy Data
Internal Rule K-Means Hierarchical Shi-Malik[27] Proposed Is the Proposed
Indices Model (Average Link) Model Model model best?

Silhouette Max 0.4835682 0.4326811 0.2461643 0.2506375 No
Scott Symons Min 800.4114 798.99 861.9192 729.9601 Yes

Wemmert Max 0.5940378 0.5102386 0.1872991 0.2446224 No
Gancarski

Tau Max -0.5383263 -0.4735096 -0.2174559 -0.1618588 Yes
Gamma Max -0.7610649 -0.6694097 -0.3078273 -0.2304259 Yes
G-Plus Min 0.4403892 0.4174937 0.3262061 0.3034445 Yes

Ray Turi Min 0.1788701 0.2293373 0.7925694 1.289401 No

Table 3. External indices for proposed toy data

On Synthetic Toy Data
Internal Rule K-Means Hierarchical Shi-Malik[27] Proposed Which One
Indices Model (Average) Model Model Model is Best?

Folkes Mallows Max 0.558085 0.6511637 0.9060712 1 Proposed
Jaccard Max 0.386073 0.4815563 0.8275653 1 Proposed
Rand Max 0.532973 0.6302703 0.8976577 1 Proposed

Czekanowski Max 0.5570745 0.6500682 0.9056478 1 Proposed
Dice

The model has been tasted with the another standard data set, known as spiral data, proposed by Chang et
al[26]. The data set has 312 data points and 2 dimensions and 3 clusters. The data set is not linearly separable. The
proposed model correctly identifies the three clusters of the spiral data with accurate point distribution. i.e. Both
path based model[26] and the present model gives 100% accuracy. This shows the strength of the proposed model on
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standard situations.

5. CONCLUSION
The proposed Mahalanobis distance based local distribution oriented spectral clustering model is a good

model in normal situations as well as it can handle the situations where the distribution of the points needs to be
considered. The result shows that the model can handle non-convex data set successfully which is a major strength of
the proposed model. Nevertheless, there are scope of improvements also. The model is time demanding because of
the eigenvector computations. So, the sparsification of the graph and clustering the sparse graph instead of the original
one may be one improvement direction. Secondly, if the inverse of the covariance matrix does not exists, then the
Mahalanobis distance cannot be calculated. Handling this will be a major improvement. Finally, model is sensitive to
parameters like ε in similarity matrix calculation. The automatic calculation of such parameters can make the model
even more robust.
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